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ASYMPTOTIC PROPERTIES OF THE APPROXIMATE SOLUTION OF 
A CLASS OF DUAL INTEGRAL EQUATIONS* 

S.M. AIZIKOVICH and I.S. TRUBCHIK 

An investigation is presented of dual integral equations generated by 
various plane contact problems:astrip resting without friction on a 
rigid base (Problem 11, a strip clamped along the base (Problem 2), a 
wedge with a clamped face (Problem 3), and also be axisymmetric problems 
relating to the action of a ring-shaped stamp on a half-space (Problem 4), 
and the interaction of an elastic bandage with an elastic cylinder /l/ 
(Problem 5). The strip, wedge, half-space and cylinder may be uniform, 
laminar of continuously inhomogeneous. Analogous equations in terms of 
Laplace transforms are obtained in problems of coupled thermo-elasticity 
and consolidation theory of water-saturated media for the bodies listed 
here /2/. 

Themethod described in /3/ is generalized to construct solutions of 
the above problems. Well-posedness and solvability classes areestablished 
for the equations, proving that the approximate method proposed here is 
asymptotic in both directions with respect to a characteristic geometric 
parameter h= H/a (H is the thickness of the strip and a is half the 
thickness of the stamp) in Problems 1 and 2, or h= Z/In (b/n) (4 and b are 
the distances from the nearest and farthest points at which the stamp 
touches the boundary of the wedge to its vertex) in Problem 3, ?.= 2/ln(b/ 

~)(a is the inner radius of the stamp and b its outer radius) in Problem 

4, k = R/a (R is the radius of the cylinder and a half the thickness of 
the bandage) in Problem 5. In problems of coupled thermo-elasticity and 
consolidation theory i also involves the parameter p of the Laplace 
transform with respect to the time coordinate /2/. The method is illus- 
trated in relation to a contact problem for a strip continuously inhomo- 
geneous in depth. 

1. Statement of the problem. Consider the dual integral equation 

@ (4 ale-iarda=2xg(r), Izl< 1 

fPrikl.Matem.Hekhan.,52,5, 850~856,1988 



665 

5 Q, (a) e-iex da = 0, 1 .r I> 1 
-m 

Let L(Aa) possess the following properties: 

where A,B, C 
by expressions 

Here 6f, yf (i = 1 I.. . , N), dk,qk(k = I, . . ..M) are constants. 

L (a) = B + C 1 a I -I- o (a*), a-0 (1.2) 
L (a) = 1 + D ) a (-1 + o (a-*), a + 00 (1.3) 

and D are constants. Then by Theorem (1.1) of /4/ L&a) can be approximated 
of the form 

L (Aa) = LN (ha) + L,$ (Aa) (1.4) 

Definition 1. The function L(a) is in class fix (class EM) if L(a) = LN (a) (L(a) = 

LA? (a)). 

Definition 2. The function L(a) is in class SN,M if it can be expressed as 

L (a) = LN (a) + LM’ (a) (1.5) 

Let Sk denote the space of functions all of whose derivatives exist in [-I,11 up to 
order k inclusive, and moreover the k-th derivatives satisfy a Htilder condition with exponent 
'1, -I- ~,a> 0; endow this space with the usual norm /4/. Let CYk denote the space of func- 

tions whose k-th derivatives are continuous with weight (x + l)V(l- z)V. The subspaces of 
Cvk of odd and even functions are denoted by CVk' and Cvk-, respectively. 

Eq.(l.l) is considered with the additional condition 

The general problem (Problem S) of determining the function q(x) from the dual integral 
Eq.(l.l) with condition (1.6) reduces to solving two auxiliary problems: the "even" problem 
(Problem S+) and the "odd" problem (Problem S-), corresponding to resolution of the functions 
g(x), r+(s), @(a) into even and odd terms (denoted below by plus and minus indices, respectively). 

2. The existence and uniqueness of the solution of Eq.(l.l) for L(a) of 

class II,. To solve Eq.(l.l) with L (Aa) of class nx and "even" g+(s), we use the lemmas 
from /5/. 

Lemna 1. Assume that g+(z) has a Fourier series &coSknz in the interval [-1,11. 
Then the series Zk (ah- ( converges if g+(z)= B,. 

Lemma 2. Under the assumptions of Lemma 1, the series Zkz lak 1 converges if g+(r)E B,. 
The proof is analogous to the proof of Learna 1 in /S/. The summation in Lemmas 1 and 2 

is over k from 1 to oo. 

Lenmka 3. Eq.(l.l) is uniquely solvable for L(c) of class Ilx if g(z) = g+(z)= B, in 
the class of functions CL/:+. We then have an estimate 

11 ‘P+ @) 1% Grn %) 1 g+ !B, 
(2.1) 

where m(A) is a constant dependent on the specific form of the functions in class A. 

Proof. Express the right-hand side of Eq.(l.l) as a Fourier series 

g+ (5) = '/*a0 + a, co9 ITZ + a,cos 2nz + . . . w4 

(This is always possible under the assumptions of Lenma 1). As in /6/, we obtain an expression 
for the stresses: 

'+(r)=+ Q_,,,(cht&i(~.z) + 42.3) 



Here and below P,p z P,,@ (ch O), Q,,fi= Qu"(ch l3) denote the associated Legendre functions 
of the first and second kinds, respectively. 

The constants Ch are determined from the system of linear algebraic equations 

nil xn = f, i- jl arnnx,. m=l,...,N (2.4) 

Here 

X=1 

(u + l/z)* P,,Qvl - (u + ‘/da 
R(LL,V)==- iu 

P,'Q 1) 

---u)(u+~-i-')PuQD 

E h, u, 4 = QwT (u, 4 - QvT (u, w) 
PuQe’ - QtPu= 

T @I u, = ((P ; ‘/# - (u t‘ ‘/*)‘)tP 

We will estimate the expression on the right-hand side of (2.3). Expressions (2.3) and 
(2.4) are meaningful provided the series ocurring in them converge. Using the asymptotic 
properties of the Legendre functions /7/ and asymptotic estimates for the incomplete spherical 
functions in Poisson form (for a general definition of the incomplete hypergeometric functions 
see /8/), we see that the series in (2.4), (2.3) are bounded if the following series (sum- 

mation over k from 1 to -) converge: 

z(- l)'k'/=a,,E(- l)k k-'lq, Z k'llal, (2.5) 

The convergence of these series follows from Lemas 1, 2 and the Leibnitz test for 

alternating series /g/. Hence we obtain (2.1). 
A more general assertion can be established: 

Lemma 4. Eq. (1.1) is uniquely solvable for L(k) of class & if g(z)= g+(r)E BktZ 

in the class of functions C$,. We then have an estimate 

11 q+@_) 11 k+ ck+,,s.<m(n.~~k) \\g+ j\ak+z (2.6) 

The proof is analogous to that of Lenuna 3 , using estimates for the right-hand sides of 
(2.3) and (2.4). 

The integral operator corresponding to a function L(a) of class X will also be denoted 
-' z x. Thus Eq.cl.1) for L(~)EIIN takes the form 

as a 

As a corollary to 

Theorem 1. Under 

Consider Problem 
Fourier series 

hNJ = g, 
Lemma 4, we obtain the following theorem. 

the assumptions of Lermna 4, 

II 'P+ (~)&::,,,G II n_,' II m(k) II g+lls11.,2 

(2.7) 

(2.8) 

S. Let us assume that the right-hand side of Eq.(l.l) can be expressed 

p_(~)=~$~ b, sinknr (2.9) 



The Fourier coefficients in (2.9) can be so chosen 

where C satisfies the condition 

In addition, 
cp, (1) = 0 

g_ (I) E B,, e < 1 

that 
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(2.10) 

(2.11) 

(2.12) 

In that case, using the results of /lo/, we can show that 

cp_ (5) = 'p+' (5) (2.13) 

is a solution of the first integral Eq.(l.l), corresponding to g_(z). It follows from (2.13) 
and (2.3) that 

(2.14) 

The coefficients D, are determined from the system of linear algebraic equations 

N 

X amnxn=fm, m=i.2,.. .,iV 
ri=, 

(2.15) 

Here 

where T(u,v) is defined in (2.4). Obviously, the solution of Eq.(l.l) for odd right-hand 
side belongs to class G,, if conditions (2.1C)-(2.12) are satisfied, and in that case the 

estimate (2.8) holds with the plus sign replaced by minus. 
This proposition is proved in the same way as lemmas 4 and 3, using estimates for the 

right-hand sides of (2.14), (2.15). 
By the superposition principle, the function cp (z) = o+ (5) + %(z) is a solution of 

the integral Eq.(l.l) for the right-hand side g(s) in the general case; hence, for g(x) = 
g+ (z) + g- (r) we have the following 

Theorem 2. Eq. (1.1) is uniquely solvable for L(a) of class n, if g(x)= Bkc2 in the 
class of functions Ck+t,,. We then have estimate (2.81, with the plus sign omitted. 

3. Existence and uniqueness of the solution of Eq.(l.l) for L(a) of class 
8N.M. Eq.(l.l) may be written in operator form for L(ha)E SN.M: 

Kvm f&m =g (3.1) 
Lenma 5. The operator &-i&r of Problem S is a contracting operator in the space C:+L,, 

for g (5)~ Bk+*, if O<h<h* or h>k', where h*. h" are certain fixed values of h. 

Proof. We prove the lemma for k=O. The proof for k>O is similar. Consider the 
operator =,cp. Without loss of generality, we can put M=l; we have 

q = q’h-‘, e = d&4%), tl = '/,9 (21 - I), 1 = i, 2, . . . 

(B,q’ are constants). 



Express \‘ILT as a series 

The coefficients ck* are found from the formulae 

and using (3.4) we obtain the estimate 

(3.4) 

(3.5) 

and the analogous estimate for i, - w (?,>h") when the right-hand side is replaced by a-'W, 

where M*,M’ are independent of h. Therefore, using estimates analogous to those of Lemmas 

3 and 4, we can choose 1, in such a way that llN-lZm is a contracting operator /11/ under the 

assumptions of the lemma. 
By Lemma 5, applying the Banach contracting mapping principle to the equation 

cp + lIN_'ZMr+I = rIn-_'g (3.6) 

we obtain a proof of the existence and uniqueness of the solution to Eq.(3.1) under the above 

assumptions. 

Hence, from Theorem 2 we have the following: 

Theorem 3. Eq. (1.1), with addditional conditions (1.2), (1.3) and (1.6), is uniquely 

solvable in the space C:+1I, if g (~1 = &+, for O<h<h*, h> h", where h*, A0 are certain 

fixed values of h, and moreover 

(3.7) 

The proof uses a well-known device of perturbation theory, based on successive approxi- 

mations, just as in /12/. 

4. Example . Let us consider Problem 1 for a homogeneous and a continuously inhomogeneous 

strip, whose Young's modulus varies with depth according to the law 

E (I) = E$ (z), Z'E I-i, 01 

f (z) = 1 ,I + sin (k&2), k = 1, 2, 3 

assuming a constant Poisson's ratio Y= 113. 

(4.1) 

Fig.1 shows graphs of the transform of the kernel L (a)'forahomogeneouslayer (curve 0) 

and inhomogeneous layers with k= i ,z. 3 (CurVeS 1,2,3 respectively). The dashedcurves 0.1, 2, 3 

correspondtothedifferencebetweentheexacttransformandits approximations according to (1.4)., 
Fig.2 presents graphs of the ratio X(J)= cpk(z)/'~~(z)+ which characterizes thedistribution 

of normal contact stresses Q(Z) under a flat-based stamp, pressed down with unit force on an 
inhomogeneous strip having Young's modulus (4.1), for different values of A and k= 1 (the 
solid curves), k --z 2 (the dashed curves) and k= 3 (the dash-dotted curves). The quantity 

T‘o (I) is the distribution of contact stresses under the stamp for an inhomogeneous strip with 

E (i) = E". The values of ok were found by formula (2.3) with JV = 9 (k= 1,2,3). The f:gures 

on the curves indicate b values. 

The results clearly show the increase in the singularity coefficient at the edge of the 

stamp, assuming that the strip has a monotonically decreasing modulus of elasticity. In the 

case of non-monotonic laws (k = :!.k==3), the curves X(z) differently for small and large h, 
indicating that the contact-pressure distribution depends significantly both on the thickness 

of the strip and on the nature of its inhomogeneity. 

The authors are indebted to V.M. Aleksandrov for his interest. 
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